
Information and Software Technology 148 (2022) 106924

A
0

H
Y
U

A

K
E
R
S
C

1

o
a
w
1
a

c
m
p
d
c
e

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ow ReadMe files are structured in open source Java projects
uyang Liu1, Ehsan Noei ∗,1, Kelly Lyons1

niversity of Toronto, Canada

R T I C L E I N F O

eywords:
mpirical study
eadMe files
oftware popularity
lustering

A B S T R A C T

Context: Recent studies on open source platforms, such as GitHub, provide insights into how developers engage
with software artifacts such as ReadMe files. Since ReadMe files are usually the first item users interact with in
a repository, it is important that ReadMe files provide users with the information needed to engage with the
corresponding repository.
Objective: We investigate and compare ReadMe files of open source Java projects on GitHub in order to (i)
determine the degree to which ReadMe files are aligned with the official guidelines, (ii) identify the common
patterns in the structure of ReadMe files, and (iii) characterize the relationship between ReadMe file structure
and popularity of associated repositories.
Method: We apply statistical analyzes and clustering methods on 14,901 Java repositories to identify structural
patterns of ReadMe files and the relationship of ReadMe file structure to repository stars.
Results: While the majority of ReadMe files do not align with the GitHub guidelines, repositories whose ReadMe
files follow the GitHub guidelines tend to receive more stars. We identify 32 clusters of common ReadMe file
structures and the features associated with each structure. We show that projects with ReadMe files that contain
project name, usage information, installation instructions, license information, code snippets, or links to images
tend to get more stars.
Conclusion: ReadMe file structure shares a statistically significant relationship with popularity as measured
by number of stars; however, the most frequent ReadMe file structures are associated with less popular
repositories on GitHub. Our findings can be used to understand the importance of ReadMe file structures and
their relationship with popularity.
. Introduction

GitHub2 is a popular open-source version control platform based
n Git3 that serves both as a repository and a community, hosting
ctivities, such as pull requests and issue tracking, work processes, and
ork outputs [1]. At the time of this research, GitHub hosted more than
00 million repositories (28 million of which are public repositories)
nd served over 37 million users.4

One of the advantages of open-source software development is that
ollaboration is common and contributions to software projects from
embers of the community are encouraged [2]. In fact, having new
eople continually join open-source projects and participate in the
evelopment process is critical for project success [3]. As such, suc-
essful open source projects must find ways to encourage developers,
specially those new to the project, to contribute to the development

∗ Corresponding author.
E-mail addresses: yuyang@cs.toronto.edu (Y. Liu), e.noei@utoronto.ca (E. Noei), kelly.lyons@utoronto.ca (K. Lyons).

1 Yuyang Liu, Ehsan Noei, and Kelly Lyons equally contributed to the research.
2 http://www.github.com.
3 https://git-scm.com/.
4 https://web.archive.org/web/20191010081343/https://en.wikipedia.org/wiki/GitHub.

activities of the project [4,5]. One of the ways that projects encourage
participation is through documentation [6] and ReadMe files [7]. In
fact, ReadMe files, one of the first things that a potential contributor
reviews when accessing a GitHub repository [8,9], contribute to the
initial impression a developer has of the software project [7] and may
influence a decision to participate in its development activities.

Because of the importance of ReadMe files, GitHub provides guide-
lines for developers and recommends that there be at least one ReadMe
file in each repository. Although there are no restrictions on the for-
matting and content of ReadMe files, GitHub also suggests ReadMe files
follow a specific format in order to help users quickly locate important
information [8]. For example, it is recommended that ReadMe files
include the following sections: description, table of contents, installa-
tion information, usage instructions, contribution instructions, author
credits, and license information [8].
vailable online 12 April 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2022.106924
eceived 15 April 2021; Received in revised form 22 March 2022; Accepted 7 Apr
il 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:yuyang@cs.toronto.edu
mailto:e.noei@utoronto.ca
mailto:kelly.lyons@utoronto.ca
http://www.github.com
https://git-scm.com/
https://web.archive.org/web/20191010081343/https://en.wikipedia.org/wiki/GitHub
https://doi.org/10.1016/j.infsof.2022.106924
https://doi.org/10.1016/j.infsof.2022.106924
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106924&domain=pdf

Information and Software Technology 148 (2022) 106924Y. Liu et al.
Previous research has reported that developers and engineers do not
always follow best practices or recommendations [10,11]. For example,
Businge et al. [10] found that 44% of Eclipse Plugin developers use
the discouraged practice of non-API interfaces in their implementations
even though non-API interfaces are unstable and unsupported. Elazhary
et al. [11] found that the actual activity observed in projects studied
on GitHub differ from the documented contribution guidelines for those
projects.

In this paper, we investigate how closely ReadMe files follow the
GitHub guidelines and the relationship between the popularity of soft-
ware projects and the ways in which their ReadMe files are structured.
GitHub offers users the ability to star a repository as a way of expressing
an appreciation for a repository and bookmarking it to keep track of
its activities [12]. Past studies have used stars as a proxy for the
popularity of repositories [13–16]. Repository popularity is important
in open source communities because more popular repositories attract
new contributors [13].

We study 14,901 open-source Java repositories and their ReadMe
files that are hosted on GitHub. We chose Java projects because Java is
a popular and well-established programming language [17]. We investi-
gate the structure of ReadMe files by identifying 16 commonly included
sections in Java repository ReadMe files (including the 7 sections recom-
mended by the GitHub guidelines) and 6 additional structural elements.
We find that more than half of the ReadMe files do not include sections
recommended in the GitHub guidelines. Although developers might
have strong motivations for not following the recommendations [18],
in the case of formatting GitHub ReadMe files, we observe that the
alignment of ReadMe files with GitHub guidelines shares a statistically
significant relationship with popularity. Specifically, repositories whose
ReadMe files contain GitHub-recommended sections receive more stars.

If most ReadMe files do not follow the GitHub guidelines, we are
interested in understanding more about how ReadMe files are structured
and the relationship of structure to popularity. Therefore, we identify
the format of the ReadMe files using 22 structural variables: 16 variables
that measure whether each of the 16 sections we identified are included
in the ReadMe file or not and 6 variables that measure additional struc-
tural statistics for each ReadMe file. We cluster the ReadMe files into
similar groups using the 22 variables and analyze the relationship of
each cluster with popularity as measured by number of stars [13]. Using
Kruskal–Wallis and Dunn’s tests we show that 56.25% of clusters have
ReadMe files whose repositories have statistically significant different
distributions of stars from those in the other clusters.

Our findings provide insights into the structures of ReadMe files.
Furthermore, our study is not limited to ReadMe files written only in
English, and, therefore, our findings are relevant to repository owners
all around the world. We address the following research questions:

(RQ1) In what ways do English ReadMe files of Java repositories
align with GitHub guidelines?
Although GitHub provides official guidelines to help developers
document their repositories, we observe that the majority of
ReadMe files do not include the GitHub recommended sections,
i.e., installation information, table of contents, usage instructions,
contribution instructions, credits, and license information. We
find that repositories whose ReadMe files are more aligned with
GitHub guidelines receive more stars.
(RQ2) How are ReadMe files of Java repositories formatted?
In the first research question, we find that most of the ReadMe
files are not formatted following the official GitHub guidelines;
therefore, we identify the most common formats. We apply DB-
SCAN [19], which is an unsupervised learning algorithm to group
the ReadMe files according to their formatting, resulting in the
identification of 32 different formats of ReadMe files.
(RQ3) What is the relationship between ReadMe file format and
the popularity of the associated Java repositories?
We compare the popularity of the repositories in the 32 clusters
2

(based on their ReadMe file structures) and we observe that 56%
of the clusters are statistically significantly different from each
other when comparing their repository star counts. For example,
the repositories for which their ReadMe files include installation
instructions and usage information are more popular than the
clusters with only a project name and some screenshots.

Paper Organization. Section 2 describes our research methodology.
Section 3 presents our approach and findings for each of the three
research questions. We discuss the threats to validity in Section 4 and
present related work in Section 5. Finally, Section 6 concludes with a
summary of findings, contributions, and suggestions for future research.

2. Research methodology

Fig. 1 provides an overview of the study setup. First, we gather
repositories with language set to Java using GHTorrent [20] and
GitHub API [21]. Then, as detailed in Section 2.1, we perform a number
of preprocessing steps, such as removing repositories with only one
committer. After that, we measure the number of repository stars
and parse the ReadMe files to collect information about 22 structural
variables in order to cluster and study ReadMe file structures and the
relationship with repository popularity.

2.1. Collecting data

We use the GitHub historical data provided by GHTorrent [20] as
of 2019-06-01 to collect the repositories that we study. We use three
main tables from GHTorrent: (i) the projects table to capture general
information about the projects and the hyperlink to its GitHub page,
(ii) the commits table to assess project activity level, and (iii) watch-
ers table to capture star information. Users can add a repository to
their favorites by clicking the star button for that repository. These
users are called stargazers and receive notifications of updates for the
repositories they have starred. The watchers table captures the star
actions of stargazers [22]. We use the repo_id, the unique identifier
for repositories, and user_id to aggregate the number of stars for each
repository. We invoke the GitHub API V3 [21] to retrieve the ReadMe
files of the repositories in our study.

We gathered all the repositories in GHTorrent that have not been
deleted from GitHub and have their identified language field as Java
(8,288,310 in total). We removed personal repositories (those with only
one committer) because personal repositories are usually used either
for experimentation or storing data [1] and are not intended for use
by other members of the open source community. In this case, the
associated ReadMe files are not likely being used to convey information
to members of the open source community and, hence, are not relevant
to our study. Removal of personal repositories resulted in 1,305,832 non-
personal repositories. We also removed repositories that do not have an
associated ReadMe file resulting in 699,236 repositories.

We wanted to make sure that all ReadMe files in our study were
being used to convey information about the associated repositories.
We considered what to do with repositories with no stars at all. On
the one hand, zero stars may indicate information about the popularity
(or lack thereof) of a repository; however, a repository with zero stars
may also indicate that there is no active engagement by others. In this
case, it is not clear if the associated ReadMe file is being used to, or
expected to be used to, convey information about the repository. We
manually inspected 385 out of 699,236 repositories (a representative
sample with a 95% confidence level) that had no stars. We observed
that such repositories are mainly: (i) small demos, (ii) course projects,
and (iii) test projects for personal exercises. Therefore, we decided to
remove repositories with no stars, resulting in 161,333 Java repositories,
all of which have been engaged with actively by others as indicated by
at least one star.

A forked repository on GitHub initially inherits the characteristics of
the main repository including its ReadMe file; however, forked reposito-
ries do not inherit the stars from their parent repositories. We manually

Information and Software Technology 148 (2022) 106924Y. Liu et al.

i
f
t
s

r
O
1
s

2

[

Fig. 1. Overview of the study setup.
nspected a randomly sampled set of 385 out of 161,333 ReadMe files
rom the forked repositories that have more than zero stars. While
he majority (76%) of the sampled ReadMe files are identical or only
lightly different from the ReadMe files of the repositories from which

they where forked (e.g., added references, updated author information),
over 97.1% of the forked repositories have a different number of stars
than the repositories from which they were forked (with the forked
repositories having many fewer stars). Our clustering algorithm will
group repositories with similar ReadMe files and, in the case of forked
repositories which may have similar ReadMe files, the difference in
stars may be solely because stars are not inherited. To mitigate the
noise introduced by the forked repositories, we excluded them from our
study, resulting in 142,471 Java repositories that are not forked from
another repository.

Finally, to reduce the number of Java ReadMe files that need to be
manually inspected in our study while maintaining the statistical signif-
icance of our findings, we randomly sampled 14,901 out of the 142,471
epositories with a 99% confidence level and confidence interval of 1.
ur sampled repositories have a median of 24 commits and average of
31 commits. The medium time between two adjacent commits in our
elected repositories is 3.5 days and the average is 19.3 days.

.2. Identifying structural elements of the readme files

GitHub suggests that ReadMe files use GitHub flavored Markdown
23], a GitHub-extended dialect of the original Markdown style5 which

5 https://daringfireball.net/projects/markdown/.
3

is a lightweight markup language with readability and is easy parsed
into HTML. We parse the ReadMe files using Mistune6 which is a
popular Python Markdown parser.

First, we identified sections in the ReadMe files. GitHub supports
six levels of headings [23]: H1 (the largest) to H6 (the smallest).
We extracted the six levels of headers from the parsed ReadMe files
and one of the authors inspected a random sample of 383, out of
142,471 repositories (with a 95% confidence level). As expected [24],
we observed that developers use different terms (keywords) to refer
to the same concept, such as Setup, Install, or Installation as a section
heading used to provide information about installing a repository. A
second author then inspected a different random sample of 383 out
of the 142,471 repositories. The two inspections resulted the same
16 commonly included sections (represented by the assigned variable
names in the first column of Table 1). Furthermore, for 14 of the
identified sections, there was 100% agreement on the keywords used to
identify the sections in the ReadMe files. In the case of two sections (the
description and installation sections) there were only minor differences
between the identified keywords of each inspection (with Cohen’s
Kappa [25] of 0.83 (strong match)). The keyword what is was identified
as a keyword for the description section in the first inspection (but not
in the second) and guide was identified as a keyword for the installation
section in the second manual inspection (but not in the first). After
discussion, it was agreed that the keyword what is would be used to
identify the description section but the keyword guide would not be
used to identify the installation section. In column two of Table 1,

6 https://github.com/lepture/mistune.

https://daringfireball.net/projects/markdown/
https://github.com/lepture/mistune

Information and Software Technology 148 (2022) 106924Y. Liu et al.

s
o
t
i
s

o
c
s

M
E
3
a
n
m
n

t
o
7

i
p
h
t
s
a

H
f
i

Table 1
The list of 16 commonly identified sections in the ReadMe files (column 1), keywords searched for in the headings to identify each section
(column 2), the corresponding GitHub-recommended sections (column 3), and a brief description of each GitHub-recommended section (column
4).
Assigned variable names Heading keyword(s) Corresponding

GitHub-recommended
sections

Description

description_header_kw,
project_name_header_kw

Describe, description,
overview, about,
summary, introduction,
what is.

Description Description is used to provide an overview
of a repository. It should be brief, but
thorough, and convey the goals for the
repository.

content_header_kw Content Table of contents It is optional, but can be useful for users to
quickly find the parts they are interested in.

install_header_kw Install, build, setup,
download, compile

Installation The installation section describes how to
install a project, and GIF images useful for
illustration purposes.

usage_header_kw Use, usage, quickstart,
run, start

Usage The usage section explains how to use a
screenshots can be included here.

document_header_kw document, docs
example_header_kw example, demo, sample
troubleshoot_header_kw troubleshoot

contribut_header_kw Contribute Contributing Contribution instructions are presented
here, especially applicable to large projects.
It can also be in a separate file.

credit_header_kw Credit, acknowledge Credits Credits list the authors of the repository.
author_header_kw author

license_header_kw License, licence,
copyright

License The license that is used if applicable.

test_header_kw Test Additional keywords that show up fre-
archive_header_kw archive quently in the ReadMe file headers but
screenshot_header_kw screenshot do not map to GitHub recommended
deprecate_header_kw deprecate, retire sections.
a
i

we list the final set of terms (keywords) that we searched for in the
headings to determine whether the 16 commonly included sections
were present in the ReadMe file or not. We mapped these sections to the
ections recommended by the GitHub guidelines [8]: description, table
f contents, installation, usage, contributing, credits, and license (the
hird column of Table 1). Note that the bottom row contains commonly-
ncluded sections that do not map to any of the GitHub recommended
ections.

We also gathered information about additional structural elements
f the ReadMe files using various statistics shown in Table 2. The first
olumn indicates the variable we assigned to each of these descriptive
tatistics about the ReadMe files.

We assessed whether ReadMe files were written entirely in English.
ost of the ReadMe files in our set of 14,901 are written entirely in
nglish (i.e., they contain only English words and characters). There are
307 ReadMe files that contain some non-English words or characters
nd only 133 out of 3307 are completely non-English (i.e., they have
o English words/characters at all). Of the ReadMe files that have a
ix of English and non-English words, on average, the proportion of
on-English words is just over 34%.

We counted the number of headings (from all six header levels) in
he parsed ReadMe files. The ReadMe files in our dataset have an average
f 4.32 headers, with 1090 ReadMe files having no headers at all, and
5% of ReadMe files having at most 6 headers.

GitHub allows a section for highlighting programming code snippets
n specialized Markdown syntax. We extracted code snippets in the
arsed ReadMe files and counted the number of snippets to measure
ow many coding snippets are included in the ReadMe files. On average,
he ReadMe files contain 4.37 code snippets presented in Markdown
yntax but there are 9165 ReadMe files out of 14,901 that do not include
ny code blocks.

GitHub Markdown supports displaying images. We extracted the
TML tags that are used for displaying images from the parsed ReadMe

iles and counted the number of images. The average number of images
4

n the ReadMe files is less than one (0.80), with 4109 ReadMe files having
t least one image in them. We also counted the number of hyperlinks
n the ReadMe files using HTML link tags. We found that most ReadMe

files (8159 out of 14,901) include at least one hyperlink in them, and
there are 3.43 hyperlinks on average in our ReadMe files.

To give an indication of ReadMe file size, we counted the number
of tokens in each ReadMe file. First, we removed stop words, punctu-
ation, digits, white space, numbers written in plain English (e.g., six),
hyperlinks, and non-ASCII tokens using spaCy [26] which is an open-
source library for natural language processing in Python. There are
223.2 tokens in our ReadMe files on average, with approximately 67.3%
of ReadMe files having no more than 20 tokens.

For each repository, we also measured the number of stars as an
indicator of popularity [13,27].

3. Approach and findings

(RQ1) In what ways do English ReadMe files of Java repositories
align with GitHub guidelines?

Motivation
As stated by the official GitHub guidelines [8]: ‘‘Making documen-

tation accessible enables people to learn about a project; making it easy to
update ensures that documentation stays relevant. It is a good idea to at least
have a ReadMe on your project, because it is the first thing many people
will read when they first find your work’’ (emphasis added) [8]. GitHub
also recommends including specific sections, such as an installation
section, in the ReadMe files. For this research question, we investigate
to what degree ReadMe files follow the GitHub guidelines. We also look
into the relationship between the inclusion of GitHub guideline sections
and repository popularity (as measured by number of stars).

Approach
As explained in Section 2.2, we identify the GitHub sections in the

ReadMe files by finding headers that include the keywords shown in
Table 1 column 2. For example, we look for the keywords credit, ac-

knowledge, or author to identify the GitHub credits section. Note that for

Information and Software Technology 148 (2022) 106924Y. Liu et al.

t
r

m
o
f
r
t
s
s
l
n
t
C
e

R

t

Table 2
The statistical information gathered for each ReadMe file and the motivation for including it as a structural element of the ReadMe files.

Variable Description Motivation

isEnglish Whether or not a ReadMe
file is written in English.

ReadMe files are written in both English and
non-English.

readme_header_count The number of sections in
a ReadMe file.

More headers indicate more sections which
may improve readability.

readme_code_block_count The number of code blocks
in a ReadMe.

Code blocks are straightforward to
understand and may lower natural language
barriers for international developers.

readme_image_count The number of images in a
ReadMe file.

Images may be beneficial for providing
information, training, and demonstrating the
functionality and features of a repository.

readme_url_count The number of hyperlinks
in a ReadMe file.

Hyperlinks are used to link to other resources
and web pages. Hyperlinks can be used to
provide more details and references.

readme_tokens_count The number of tokens,
after the preprocessing
steps in Section 2.2, in
ReadMe files.

A larger ReadMe file provides more material
and content for users.
o
d

l
(
s
R
𝑑

T
w
r
a
e

(
a
t
r

d
s
i
t
t
a
𝑑
u
a

h
c
r
R

f

Table 3
The number of English java ReadMe files that contain each recommended section versus
he ones that do not. The asterisks in the last column indicates if the popularity of the
epositories associated with each group is statistically significantly different.
Section Not included Included 𝑝-𝑣𝑎𝑙𝑢𝑒 Cohen’s d

Table of contents 11,417 (98%) 177 (2%) 5.69e−007 *** 0.219
Credits 11,188 (96%) 406 (4%) 7.62e−023 *** 0.287
Contributing 10,974 (95%) 620 (5%) 6.98e−068 *** 0.415
License 10,123 (87%) 1471 (13%) 5.56e−147 *** 0.416
Installation 9196 (79%) 2398 (21%) 2.43e−122 *** 0.311
Usage 7979 (69%) 3615 (31%) 1.50e−161 *** 0.314
Description 6864 (59%) 4730 (41%) 3.07e−004 *** 0.039

this research question, we focus on those ReadMe files written entirely
in English, i.e., 11,594 out of 14,901 repositories, as our identifying
keywords are in English.

We measured the popularity (number of stars) of each repository,
and, using the Mann–Whitney U test [28], we analyze how the number
of stars relates to the inclusion of the guideline sections in ReadMe
files. The null hypothesis in the Mann–Whitney U test states that
the distributions of stars between the ReadMe files containing or not
containing each recommended section are the same. For each recom-
mended section, such as the installation section, with a 𝑝-𝑣𝑎𝑙𝑢𝑒 ≤ 0.05,
we reject the null hypothesis and, thus, conclude that the distributions
of stars of the repositories associated with the ReadMe files containing
the recommended section are statistically significantly different from
distribution of stars for repositories whose ReadMe files do not contain
the section.

We also measured the effect size by calculating Cliff’s Delta of the
difference in the number of stars between the repositories that contain
each recommended section in their ReadMe files and the repositories
that do not include that section in their ReadMe files [29]. Cliff’s Delta

easures how much overlap exists in the number of stars of each pair
f repositories. If the number of stars for the repositories whose ReadMe
iles include certain sections is greater than the number of stars for the
epositories whose ReadMe files do not, the Cliff’s Delta will be greater
han 0. Cliff’s Delta gets closer to 1 as the difference in the number of
tars increases. Similarly the Cliff’s Delta is less than 0 if the number of
tars for the repositories whose ReadMe files include certain sections is
ess than the number of stars for the repositories whose ReadMe files do
ot and gets closer to −1 as the difference increases. We then interpret
he Cliff’s Delta by the standards of Cohen’s d. Specifically, we map a
liff’s Delta of 0.474, 0.330, and 0.147 to large, medium, and small
ffect size, respectively [30,31].

esults
Table 3 (column 2) shows the number (and percentage) of reposi-
5

ories with ReadMe files that do not include each of the recommended l
sections, ranging from 59% for the description section to 98% for table
of contents section. Fig. 3 shows the number of stars for the repositories
with English ReadMe files that contain each section (lighter color, right
hand side) versus those that do not (darker color, left hand side).

The description section provides users with an introduction to the
repository. As shown in Table 3, this section is the most common
section included in the ReadMe files, having been included in 41% of the
ReadMe files in our study. As illustrated in Fig. 3, the repositories whose
ReadMe files do not contain this section are statistically significantly
less popular than ones that do contain a description. With Cohen’s 𝑑
f 0.039, the difference in the number of stars between including the
escription section and not including description section is small.
Table of contents is an optional section according to GitHub guide-

ines and it is only included in 177 of the ReadMe files we analyzed
i.e., 2%). However, despite being optional, we observe a statistically
ignificant difference in the number of stars for the repositories with
eadMe files having a table of contents with a 𝑝-𝑣𝑎𝑙𝑢𝑒 ≤ 0.05 and Cohen’s
of 0.219.
The installation section gives instructions for setting up a repository.

his section appears in only 21% of the repositories in our dataset,
hile the inclusion of this section shares a statistically significant

elationship with more popular repositories with a 𝑝-𝑣𝑎𝑙𝑢𝑒 ≤ 0.05. With
Cohen’s 𝑑 of 0.311, the inclusion of an installation section has a small

ffect size on the number of stars for the repositories.
The usage section appears in the ReadMe files of 3615 repositories

i.e., 31%). This section should instruct users how to use the repository
fter installation. With a 𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.50𝑒−161 and Cohen’s 𝑑 of 0.314,
he ReadMe files including this section are associated with more popular
epositories with a small effect size.

Out of the 11,594 English ReadMe files, only 620 (5%) have a
edicated section for contributing information; however, we observe a
tatistically significant relationship between this section and popular-
ty. The median number of stars associated with ReadMe files including
he contributing section is 9 while the median number of stars for
he repositories without this section is only 2 (see Fig. 3). Including
contributing section in ReadMe files has a medium effect (Cohen’s
= 0.415) on the number of stars. The contributing section encourages

sers to make contributions to the repository, and, therefore, could be
reason for the higher recorded popularity.

Out of the 11,594 English ReadMe files, only 406 (4%) of them
ave a section for credit information; however, the ones that have a
redit section, as shown in Fig. 3, are associated with more popular
epositories. With a Cohen’s 𝑑 of 0.287, having a credit section in the
eadMe file has small effect size on the number of stars.

The license section is provided in 1471 (13%) of English ReadMe
iles in our dataset. Fig. 3 shows that the repositories that include a

icense section are more popular compared to the ones without a license

Information and Software Technology 148 (2022) 106924Y. Liu et al.
Fig. 2. Example ReadMe files from clusters 1, 13, 23, and 27.
section, which is also reflected in terms of Cohen’s 𝑑 = 0.416 with a
medium effect size.

In summary, the majority of the English ReadMe files do not include
the recommended sections as shown in Table 3. Developers tend to
include the description and usage sections more often than the other
sections (41% and 31% for description and usage sections, respectively).
On the other hand, the other recommended sections are rarely included
in the ReadMe files (between 2% and 21%). During the initialization of
a repository on GitHub, a trivial ReadMe file with repository name is
automatically generated, which is possibly motivating developers to en-
ter a description for their repository. There are statistically significant
differences in the popularly of the repositories that include each section
versus the ones that do not, as observed by the Mann–Whitney U test,
with 𝑝-𝑣𝑎𝑙𝑢𝑒𝑠 ≤ 0.05 for each recommended section (see last column of
Table 3).

Furthermore, we observe that including the sections of contributing
and license share a larger difference in terms of the distribution of
6

stars. Also, the Cohen’s 𝑑 values of including these two sections (0.415
and 0.416, respectively) shows that they both have the highest effect
size among all the recommended sections. We considered the average
number of stars in ReadMe files that contain (or do not contain) each
GitHub-recommended section. To further interrogate these results, we
carried out a small qualitative analysis of 13 popular Java repositories
(high number of stars) whose ReadMe files do not include the recom-
mended sections. We found that popular repositories whose ReadMe
files do not contain GitHub recommended sections have a small number
of contributors (between 2 and 15), have a large number of forks
(between 363 and 1200), and most (all but 2) have open issues, an
indication of repository activity. It is important to note that the number
of forks has been found to correlate with the number of stars [32] so a
high number of forks for these repositories is not surprising; however,
it is possible that having a small number of contributors means that
communication through ReadMe files is not as critical to project success,
especially in projects with regular activity (as indicated by issues).

Information and Software Technology 148 (2022) 106924Y. Liu et al.

i
s
R

(

M

a
o
t
a
s
a
t
d

A

w
s
t
a
s
h
c
t
o
u
f
c

a

e

Fig. 3. The distribution of stars of Java repositories with English ReadMe files that
nclude (lighter bar) and do not include (darker bar) each GitHub-recommended section,
orted by decreasing median number of stars in the lighter bars. Repositories whose
eadMe files include these sections receive more stars.

▷

⊴

�

◁
The majority of English ReadMe files (83.47% on average) are not
aligned with the GitHub guidelines. However, the repositories whose
ReadMe files are aligned with GitHub guidelines receive statistically
significantly more stars.

RQ2) How are ReadMe files of Java repositories formatted?

otivation
As observed in RQ1, the majority of ReadMe files are not formatted

ccording to GitHub guidelines. Hence, we identify common patterns
f formatting for ReadMe files. Understanding how ReadMe files are
ypically formatted informs the open-source community about the most
nd the least frequently used patterns. Moreover, GitHub and other
imilar open-source repository platforms can update their guidelines
ccording to our findings, e.g., introducing new content categories
o help detail the most frequently included sections and providing
evelopers with more detailed instructions on documenting projects.

pproach
We are interested in the structure of ReadMe files beyond just

hether there is alignment with GitHub guidelines; thus, for this re-
earch question, we consider all of the 14,901 ReadMe files in our set:
hose written entirely in English, and those with a mix of English
nd non-English words or with no English words. It is interesting that
ome ReadMe files with a mix of English and non-English words have
eaders written in English (for example, see Fig. 2(b) and (c)). In this
ase, we measure the existence of the English headers in ReadMe files
hat had both English and non-English words. We then treat our set
f 22 structural elements (Tables 1 and 2) as a feature vector and
se the Vector Space Model [33] to represent the ReadMe files in the
eature space. We use DBSCAN [19,34], a density based non-parametric
lustering algorithm, to categorize the ReadMe files from the 14,901

Java repositories. Similar ReadMe files, with similar feature vectors, are
shorter distance from one another in the vector space.

DBSCAN considers each ReadMe file as a node in the feature space
and the nodes that appear together within a high density area are
clustered together. We normalize statistical elements in order to give
each metric a fair contribution to the clustering algorithm. We use
𝑐𝑜𝑠𝑖𝑛𝑒 distance similarity in DBSCAN [33] to calculate the distance
between the nodes. There are two hyper-parameters in DBSCAN that
need to be set prior to running the algorithm:

– 𝜖: The maximum distance between two nodes to be considered
7

in one cluster.
Fig. 4. The 𝑘-𝑑𝑖𝑠𝑡 plot: distance graph for our Java repositories. The 𝑥-axis is the
number of repositories whose 𝑘th nearest neighbor is at the distance given on the
𝑦-axis. The horizontal line intersecting at distance 0.17 shows the first knee point.

– 𝜇: The minimum number of nodes in one cluster forming the
core nodes.

The nodes that have at least 𝜇 neighbor nodes within the 𝜖 distance are
called the core nodes. Starting from the core nodes, if traveling along
the paths formed by the core nodes, DBSCAN groups all the nodes that
are reachable from each of the others in one cluster. The points that
are not reachable by any of the nodes are considered as noise.

We use the heuristics proposed by Ester et al. [19] and Birant
t al. [35] to determine 𝜇, and, as a result, set 𝜇 = 10. For finding the

best 𝜖, we followed the same heuristics provided by Ester et al. [19]
and Birant et al. [35] where 𝑘-𝑑𝑖𝑠𝑡, i.e., the distance between a node to
its 𝑘th nearest neighbor, is more sensitive to noisy nodes compared to
the nodes in a high density area. By plotting the 𝑘-𝑑𝑖𝑠𝑡 graph, mapping
each node to the distance from its 𝑘th nearest neighbor, we identify the
best 𝜖 (i.e., the maximum distance).

Fig. 4 shows the 𝑘-𝑑𝑖𝑠𝑡 plot, illustrating different values of distance
against the number of repositories. The optimum value of 𝜖 should be
around the first knee point (highlighted by a horizontal line) which is
between 0.17 and 0.18. After manually inspecting different values of 𝜖,
we identified 0.17 as the best estimation of 𝜖 for clustering our ReadMe
files.

Results
Table 4 describes the structure of the ReadMe files in each cluster.

There are 32 clusters of ReadMe files that resulted by applying DBSCAN
on the 22 ReadMe file structural elements. Out of 14,901 ReadMe files,
only 185 were marked as noisy (i.e., the ReadMe files that could not be
fit in any of the clusters).

Table 4 lists which of the 16 sections are included in each cluster
of ReadMe files and, for the structural variables, it reports the average
value for each variable across ReadMe files. In Table 4, the clusters of
ReadMe files are sorted by cluster size (the number of ReadMe files in
each cluster).

Cluster 1 contains the largest number of repositories. The ReadMe
files in this cluster have 9 sections on average and more than half of
them provide installation instructions and usage information (i.e. 54%
and 65%, respectively). However, we could not find a common pattern
of sections in this cluster. Also, in the fourth column of Table 4, 1
indicates if all the ReadMe files in a cluster are entirely in English, and 0
indicates otherwise (i.e., ReadMe files are either non-English or a mixed
usage of English and non-English). Unlike other clusters (which are
either entirely in English or not), in Cluster 1, 92% of the ReadMe files
are written all in English and the remaining ones have a mixed usage
of English and non-English (indicated by a dash in Table 4). Fig. 2(a)
shows an example ReadMe file in this cluster, showcasing the usage,
installation, and license sections.

The second largest cluster of ReadMe files is Cluster 0. The ReadMe

files in this cluster are all written in English but they either use plain

Information and Software Technology 148 (2022) 106924Y. Liu et al.

C

A
R

A
E
c
E
H
i
f

e
m
t
l
b
s

p
s
c
c
h

Table 4
Overview of the ReadMe file structural elements in all of the identified clusters, sorted by the number of ReadMe files in each cluster. The right five columns show the average
value in the cluster.

ID Size Sections included All in English Avg value of structural variables

header_count code_block_count image_count url_count tokens_count

1 4350 Mixed usage of some sections – 9 10 1 7 476
0 3515 None of the 16 included 1 1 1 0 1 87
5 2872 Project name 1 1 1 0 1 55
4 1234 None of the 16 included 0 4 4 1 3 138
11 1171 Project name 0 3 2 1 2 81
2 375 Usage 1 5 6 1 3 286
6 251 Install 1 4 5 1 3 234
8 145 Example 1 3 4 0 2 175
3 119 Description 1 4 3 1 2 232
10 110 License 1 3 2 1 4 186
19 61 License 0 6 5 3 5 189
26 45 Usage 0 8 5 3 4 320
7 38 Install 0 6 4 1 5 344
12 36 Test 1 3 2 0 2 111
13 35 Project name, license 0 6 5 2 3 151
16 34 Project name, usage 0 10 13 1 7 453
15 33 Document 1 4 1 1 6 177
23 31 Contribute 1 4 1 2 7 189
31 31 Example 0 8 4 1 7 264
28 30 Screenshot 1 3 0 2 2 86
22 26 Project name, install 0 10 4 1 2 165
24 23 Project name, example 0 7 6 3 2 184
17 22 Install, usage 0 10 12 1 5 720
20 21 Description 0 8 15 1 6 543
25 18 Content 1 4 1 1 3 234
9 17 Install, license 0 9 18 3 10 657
21 16 Project name, test 0 7 1 4 2 125
27 13 Usage, license 0 11 16 3 8 579
14 12 Credit 1 5 3 0 4 506
29 11 Test 0 8 6 1 23 290
30 11 Project name, description 0 9 8 2 3 220
18 10 Author 1 3 0 1 2 93
r
n
b
s
a
a
c
t
s

R

text to present their ReadMe files or are not formatted using GitHub
Markdown to create sections. Cluster 0 is similar in terms of structure to
Cluster 4 (the fourth largest cluster). However, ReadMe files in Cluster 4
are not entirely in English. Moreover, ReadMe files in Cluster 4 contain
a larger number of sections (4 on average) in comparison to Cluster 0
(1 on average). Also, ReadMe files in Cluster 4 are longer than those in

luster 0 on average (see the last column in Table 4).
The third and fifth largest clusters are Cluster 5 and 11, respectively.

ll the ReadMe files in these clusters include the repository name in the
eadMe files. However, the ReadMe files in these clusters do not include

any of the other GitHub recommended sections.
As shown in Table 4, the ReadMe files in Clusters 0, 5, 4, and 11 have

a relatively small number of section headers, code blocks, and images.
s also shown in Table 4, the clusters with ReadMe files with non-
nglish words are more likely to have a higher number of headers,
ode blocks, images, and hyperlinks. This may be a tactic used by non-
nglish speaking developers to attract a larger international audience.
owever, installation, usage and license sections are the most frequently

ncluded sections regardless of the languages used to write the ReadMe
iles.

Cluster 2 is the sixth largest cluster, and the third largest cluster
ntirely in English. The ReadMe files in this cluster include the recom-
ended usage section and contain 286 tokens on average. On average,

hey contain one image and six blocks of code. Cluster 6, the next
argest cluster, is similar to Cluster 2 in terms of the structural variables,
ut instead of usage, the ReadMe files in Cluster 6 include an installation
ection.

Overall, as in Table 4, among all the 32 clusters of ReadMe files,
roject name has been used commonly in 8 clusters. The next popular
ections are usage, install, and license appearing in 5 of the identified
lusters each. Example ReadMe files are shown in Fig. 2. The next
ommonly included sections are example and description, each of which
8

ave been included in three of our clusters. r
�

�

⊵

�

We identify 32 clusters of ReadMe file formats. ReadMe files tend
to include project name, installation instructions, usage information,
and license. Those ReadMe files that are not written fully in English
provide more content in comparison to English ones; for example,
ReadMe files with non-English words include 7.65 sections and 5.71
hyperlinks while their English counterparts include 3.73 sections and
3.27 hyperlinks on average.

(RQ3) What is the relationship between ReadMe file format and the
popularity of the associated Java repositories?

Motivation
Having identified 32 patterns (clusters) of ReadMe file formats in

RQ2, we explore the relationship between the identified patterns of
ReadMe files and repository popularity reflected by their number of
GitHub stars. Our findings provide insights into ReadMe file formats of
popular repositories.

Approach
We compare the number of stars associated with the ReadMe files of

epositories in each cluster using the Kruskal–Wallis test [36]. As the
ull hypothesis, we assume that all the clusters share the same distri-
ution of number of stars. Kruskal–Wallis test [36] is non-parametric
tatistical test to check whether the distribution of the number of stars
re the same among all the clusters. We reject the null hypothesis with
𝑝-𝑣𝑎𝑙𝑢𝑒 ≤ 0.05. After that analysis, we apply the Dunn’s test [37] to

onduct a pairwise comparison between all of the clusters to identify
he ones that have a statistically significant different distribution of
tars than the others.

esults
The Kruskal–Wallis test reports a 𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.451𝑒−306; therefore, it

ejects the null hypothesis, i.e., there exists at least one cluster with

Information and Software Technology 148 (2022) 106924Y. Liu et al.
Fig. 5. Pairwise Dunn’s test on all the identified clusters. The darker squares represent
smaller 𝑝-𝑣𝑎𝑙𝑢𝑒, and lighter represents larger. The cross (𝚇) marks on the heatmap
denote 𝑝-𝑣𝑎𝑙𝑢𝑒𝑠 ≤ 0.05.

a statistically significant different distribution of stars from the rest
of the clusters. By applying the Dunn’s test, as shown in Fig. 5, we
observe that 56.25% of clusters have statistically significant different
distributions of stars from each other. The cross (𝚇) marks in Fig. 5
denote if the difference between that pair of clusters (in terms of
number of stars) is statistically significant. Fig. 6 shows the distribution
of project popularity (i.e., stars) for each cluster, sorted by the median
number of stars.

As shown in Fig. 6, Cluster 13 has the highest median number of
stars. As presented in Table 4, ReadMe files in this cluster contain non-
English words but they include the project name (in English) and a
section for license information. The ReadMe files in this cluster also
include several images and code snippets. Fig. 2(b) provides an example
ReadMe file in this cluster. In Fig. 2(b), the project name and license
sections are circled.

Cluster 27 is associated with repositories that have the second
highest median number of stars. Interestingly, in both Cluster 27 and
Cluster 13, the ReadMe files are not written all in English. The ReadMe
files in Cluster 27 include usage and license sections (circled in an
example ReadMe file from Cluster 27 in Fig. 2(c)). They are among the
largest ReadMe files on average and include a relatively large number
of header blocks, code snippets, and images.

Cluster 23 contains ReadMe files of the third most popular group of
repositories. Different from the previous two clusters, the ReadMe files
in Cluster 23 are written all in English. They also have a contributing
section with the project name in the header. Fig. 2(d) shows an example
ReadMe file in this cluster.

Cluster 19, the fourth most popular cluster, has similar characteris-
tics as Cluster 13, except the repositories in this cluster do not contain
the project name in their ReadMe file headers.

Cluster 9, the fifth most popular cluster, has the largest average
number of tokens and largest average number of code snippets. The
ReadMe files in this cluster use code blocks to demonstrate their detailed
usage e.g. json format patterns, error code definitions.

As shown in Table 4, and discussed in RQ2, clusters 0, 5, 4, and 11
include the largest number of repositories; however, they are among
the least popular clusters in terms of stars (see Fig. 6). The reposi-
tories in these four clusters do not include any of the recommended
9

sections from GitHub guidelines in their ReadMe files. Furthermore,
their ReadMe files have on average fewer than 4 headers, fewer than
4 code blocks, fewer than 1 image, and fewer than 3 URLs, which
makes the length of the ReadMe files smaller as measured by number
of tokens. As previously investigated in RQ2, cluster 0 is comprised of
ReadMe files that are not formatted using GitHub Markdown, or are in a
different format, or are in plain text. This may suggest that developers
should avoid these ReadMe patterns and try to include more sections
recommended by the GitHub guidelines and also include more code
examples, images that show how to use or setup the repositories, and
URL links to other available resources.�

�

⊵

�

The differences in the popularity of the repositories associated with
each cluster of ReadMe files is statistically significant. Repositories
with ReadMe files that include usage and license sections with several
images and code snippets are among the most popular repositories.
In fact, the most common patterns of ReadMe files are associated
with the least popular repositories.

4. Threats to validity

4.1. Internal validity

We use various variables and keywords to identify each section in
the ReadMe files. In order to identify keywords for matching headers,
two people independently manually identified keywords. Their findings
match strongly with Cohen’s Kappa [25] of 0.83. Then, the keywords
and variables were engineered using a representative sample of ReadMe
files in order to capture semantically-related keywords. We include
ReadMe files written in all languages in our study. The inclusion of
non-English language ReadMe files might affect the heuristics used to
identify the sections in the ReadMe files. To mitigate this threat, we
not only engineered the section variables but also introduced structural
variables, such as the number of images or code snippets, since they are
invariant to languages being used to write ReadMe files. Moreover, since
our clustering algorithm identified different clusters for non-English
versus English ReadMe files, we were able to compare and contrast the
structure of ReadMe files written in English vs. those written in other
languages.

ReadMe files may not be the only documentation that developers
provide on GitHub. Wiki pages are officially provided by GitHub as
well. We selected a representative sample of Java repositories, and
found that only 2.93% of them have wikis with non-empty content.
Another way of conveying information to prospective contributors is by
using repository badges [38]. Analysis of the repositories in our dataset
found that more than 85% of the repositories did not have any badges
associated with them and 92% have only zero or one badge.

The latest update of GitHub’s official guidelines was on July 15,
2016. Therefore, the ReadMe files that were introduced before this date
may not have had the opportunity to align with the official guidelines.
However, the focus of this study is the alignment of the existing ReadMe
files with the latest GitHub guidelines and the relationship of that
alignment with repository popularity.

4.2. External validity

Our findings may not generalize well to ReadMe files of reposito-
ries written in other programming languages, such as Python or R.
However, there exist several languages similar to Java, such as C#
and JavaScript, for which our findings can potentially apply. Future
research should analyze ReadMe file patterns in other programming
languages.

When considering the findings for RQ3, there might be two possible
scenarios related to the observed relationship between ReadMe file

format and number of stars: (i) stars increase after the changes in the

Information and Software Technology 148 (2022) 106924Y. Liu et al.

(

s
i
a
W
n
b
i
t
s
T
(
t
f
n
s

4

o
a
p

5

o
b
n
u

e
d
h
r
d
o
p

a
h
c
o
c
o
t
t

s

Fig. 6. Distribution of repository popularity (logarithmic transform of the number of stars), sorted by median. Gray bars are clusters with ReadMe files that only have English
words, very light gray bars are clusters with ReadMe files that have some non-English words, the black bar is the cluster with a mixture of ReadMe file languages, cluster −1
dashed outline) contains noisy data points.
tructure of ReadMe files, or (ii) ReadMe files are changed after an
ncrease in the number of stars (after becoming more popular). We
pplied the Granger causality test to shed more light on this question.
e investigated 182 repositories that had more than 1 change in the

umber of identified ReadMe sections, a change in the number of stars
y at least one and for which there were at least 4 observed changes
n the time series used in the Granger causality test. We formed two
ime series: (i) ReadMe file alignments (i.e., count of the number of
ections recommended by GitHub over time), and (ii) number of stars.
he Granger causality test shows that, for 58.2% of the repositories
106 out of 182), the increase in stars occurs after changes are made
o the number of recommended sections in the ReadMe file. However,
or only 29.1% of the repositories (52 out of 182), the increase in the
umber of stars happens before changes in the number of recommended
ections in the ReadMe files.

.3. Reliability

This study is based on open source repositories that are available
nline and can be used in future research. Moreover, the datasets
nd scripts of this study are available online7 for an easier replication
rocess.

. Related work

Stars are commonly used by researchers to represent the popularity
f repositories [13–16]. The number of stars has also been found to
e positively correlated with number of forks [13]. We decided to use
umber of stars to represent repository popularity because others have
sed it and it is relatively easy to retrieve.

Hata et al. [39] applied game theory to project documentation,
.g., the wiki page, to analyze the crucial points for attracting new
evelopers to participate in project development. They found that
aving documentation for projects can reduce the effort to set up envi-
onments, and can encourage developers to participate. However, they
id not look into the details of the documentation. Our research focused
n the structure of repository documentation and its relationship to
opularity.

Aggarwal et al. [6] studied the co-evolution between documentation
nd popularity of a project and found that consistently popular projects
ave consistent documentation efforts, which in turn, attracts more
ollaborators contributing to the documentation. Their research focuses
n the changes in the documentation through time and how these
hanges correlate with popularity. Our work reveals the usage patterns
f specific sections in ReadMe file documentation, the extent to which
he ReadMe files align with GitHub recommended guidelines and how
hat alignment is related to popularity.
ReadMe files have also been studied by software engineering re-

earchers. Hassan and Wang [40] used ReadMe files to automatically

7 https://doi.org/10.5281/zenodo.6369440.
10
build software projects. They extracted code snippets from ReadMe
files and identified build systems based on keyword matching. Zhang
et al. [41] searched for similar projects on GitHub by extracting features
from ReadMe files. ReadMe file size was one of several features of repos-
itories used to predict GitHub project popularity in [14]. However,
earlier research does not leverage the format information in the ReadMe
files, which we incorporate in our structural variables. Prana et al. [7]
manually engineered features, such as linguistic patterns and number of
elements, from a set of 393 ReadMe files. They trained classifiers based
on the features to identify eight categories of ReadMe file content: what,
why, who, how, when, references, contributions, and other, that can be
used to help users with information discovery. Some of their categories
are similar to what we consider as ReadMe sections, e.g. their how
category is similar to the GitHub usage section, and their contribution
category is similar to the GitHub contributing section. However, they
did not relate the identified ReadMe file features or content structure to
repository popularity.

6. Conclusion

In this paper, we study different patterns that are used to format
ReadMe files by investigating 14,901 open-source Java repositories that
are hosted on GitHub. First, we compare English ReadMe files with the
GitHub guidelines. We observe that the majority of English ReadMe
files (83.47% on average) do not include the sections recommended
by GitHub. However, the English ReadMe files that are more aligned
with GitHub guidelines belong to the repositories that are statistically
significantly more popular than other repositories. Second, we calculate
22 structural variables of the ReadMe files and perform a clustering
algorithm on the ReadMe files. We identify 32 common patterns for
formatting ReadMe files. Most of the ReadMe files tend to include project
name, installation instructions, usage information, and a license section.
Also, we find that ReadMe files that are not written all in English
provide more text and media content compared to those with only
English words. Third, by comparing the popularity of the repositories
that are associated with each cluster of ReadMe files, we observe a
statistically significant difference in number of stars associated with
each cluster of ReadMe files. We find that the most frequent patterns
of ReadMe files are associated with less popular repositories on GitHub.
Developers and the open-source community benefit from our findings
by understanding the patterns of ReadMe files associated with more
popular repositories.

In the future, we plan to extend the research to other programming
languages in GitHub and investigate if ReadMe files for repositories
written in other languages have similar or different patterns. We will
also apply our methodology to other open-source platforms and inves-
tigate if ReadMe files in different open-source version control platforms
have similar patterns as the ones on GitHub. Finally, we will con-
sider adding other documentation-related signals to understand their

relationship to popularity such as wikis [39] and documentation [6].

https://doi.org/10.5281/zenodo.6369440

Information and Software Technology 148 (2022) 106924Y. Liu et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This research was funded in part by an NSERC Strategic Partnership
Grant.

References

[1] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M. German, D. Damian, An
in-depth study of the promises and perils of mining github, Empir. Softw. Eng.
21 (2016) 2035–2071, http://dx.doi.org/10.1007/s10664-015-9393-5.

[2] V. Cosentino, J.L. Cánovas Izquierdo, J. Cabot, A systematic mapping study
of software development with GitHub, IEEE Access 5 (2017) 7173–7192, http:
//dx.doi.org/10.1109/ACCESS.2017.2682323.

[3] Y. Park, C. Jensen, Beyond pretty pictures: Examining the benefits of code
visualization for open source newcomers, in: 2009 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis, IEEE, 2009,
pp. 3–10.

[4] I. Steinmacher, M.A. Gerosa, D. Redmiles, Attracting, onboarding, and retaining
newcomer developers in open source software projects, in: Workshop on Global
Software Development in a CSCW Perspective, 2014.

[5] I. Steinmacher, I.S. Wiese, T. Conte, M.A. Gerosa, D. Redmiles, The hard life of
open source software project newcomers, in: Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering, 2014,
pp. 72–78.

[6] K. Aggarwal, A. Hindle, E. Stroulia, Co-evolution of project documentation and
popularity within GitHub, in: Proceedings of the 11th Working Conference on
Mining Software Repositories, ACM, New York, NY, USA, 2014, pp. 360–363,
http://dx.doi.org/10.1145/2597073.2597120, URL: http://doi.acm.org/10.1145/
2597073.2597120.

[7] G.A.A. Prana, C. Treude, F. Thung, T. Atapattu, D. Lo, Categorizing the content
of GitHub readme files, Empir. Softw. Eng. 24 (2019) 1296–1327, http://dx.doi.
org/10.1007/s10664-018-9660-3.

[8] GitHub, Documenting your projects on GitHub, 2016, URL: https://guides.github.
com/features/wikis/.

[9] M. Koskela, I. Simola, K. Stefanidis, Open source software recommendations
using GitHub, in: International Conference on Theory and Practice of Digital
Libraries, Springer, 2018, pp. 279–285.

[10] J. Businge, A. Serebrenik, M. Brand, Analyzing the eclipse API usage: Putting the
developer in the loop, 2013, p. 1, http://dx.doi.org/10.1109/CSMR.2013.14.

[11] O. Elazhary, M.A. Storey, N. Ernst, A. Zaidman, Do as I do, not as I say: Do
contribution guidelines match the GitHub contribution process? in: 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME), IEEE,
2019, pp. 286–290.

[12] GitHub, Saving repositories with stars, 2021, URL: https://help.github.com/en/
github/getting-started-with-github/saving-repositories-with-stars.

[13] H. Borges, A. Hora, M.T. Valente, Understanding the factors that impact the
popularity of GitHub repositories, in: 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2016, pp. 334–344, http://dx.
doi.org/10.1109/ICSME.2016.31.

[14] J. Han, S. Deng, X. Xia, D. Wang, J. Yin, Characterization and prediction of
popular projects on GitHub, in: 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC), 2019, pp. 21–26, http://dx.doi.org/
10.1109/COMPSAC.2019.00013.

[15] A. Zerouali, T. Mens, G. Robles, J.M. Gonzalez-Barahona, On the diversity of
software package popularity metrics: An empirical study of npm, in: 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 589–593, http://dx.doi.org/10.1109/SANER.2019.8667997.

[16] W. Mao, B. Sun, G. Xu, C. Liu, C. Si, W. Wang, Understanding effects of
collaborations in developing mobile computing systems: Popularity, efficiency,
and quality, IEEE Access 7 (2019) 33380–33392, http://dx.doi.org/10.1109/
ACCESS.2019.2904333.

[17] M. Storey, A. Zagalsky, F.F. Filho, L. Singer, D.M. German, How social and
communication channels shape and challenge a participatory culture in software
development, IEEE Trans. Softw. Eng. 43 (2017) 185–204, http://dx.doi.org/10.
1109/TSE.2016.2584053.

[18] N. Yang, P. Cuijpers, R. Schiffelers, J. Lukkien, A. Serebrenik, Painting flowers:
reasons for using single-state state machines in model-driven engineering, in:
Proceedings of the 17th International Conference on Mining Software Reposi-
tories, 2020, pp. 362–373. 17th International Conference on Mining Software
Repositories, MSR ; Conference date: 25-05-2020 Through 26-05-2020.
11
[19] M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering
clusters a density-based algorithm for discovering clusters in large spatial
databases with noise, in: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, AAAI Press, 1996, pp. 226–231, URL:
http://dl.acm.org/citation.cfm?id=3001460.3001507.

[20] G. Gousios, The GHTorrent dataset and tool suite, in: Proceedings of the 10th
Working Conference on Mining Software Repositories, IEEE Press, Piscataway,
NJ, USA, 2013, pp. 233–236, URL: http://dl.acm.org/citation.cfm?id=2487085.
2487132.

[21] GitHub, GitHub API, 2020, https://developer.github.com/v3/. URL: https://
developer.github.com/v3/.

[22] J. Sheoran, K. Blincoe, E. Kalliamvakou, D. Damian, J. Ell, Understanding
watchers on GitHub, in: Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 336–339.

[23] GitHub, GitHub flavored markdown spec, 2020, https://github.github.com/gfm/.
URL: https://github.github.com/gfm/.

[24] S. Ikeda, A. Ihara, R.G. Kula, K. Matsumoto, An empirical study of readme
contents for javascript packages, IEICE Trans. Inform. Syst. 102 (2019) 280–288.

[25] A.B. Cantor, Sample-size calculations for Cohen’s kappa, Psychol. Methods 1
(150) (1996).

[26] M. Honnibal, I. Montani, spaCy 2: Natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing, 2017,
(Unpublished software application, https://spacy.io).

[27] K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, D. Damian, Understanding the
popular users: Following, affiliation influence and leadership on GitHub, Inf.
Softw. Technol. 70 (2016) 30–39.

[28] H.B. Mann, D.R. Whitney, On a test of whether one of two random variables
is stochastically larger than the other, Ann. Math. Statist. 18 (1947) 50–60,
http://dx.doi.org/10.1214/aoms/1177730491.

[29] N. Cliff, Dominance statistics: Ordinal analyses to answer ordinal questions,
Psychol. Bull. 114 (3) (1993) 494–509, http://dx.doi.org/10.1037/0033-2909.
114.3.494.

[30] M. Hess, J. Kromrey, Robust confidence intervals for effect sizes: A comparative
study of cohen’s d and cliff’s delta under non-normality and heterogeneous vari-
ances, in: Paper Presented At the Annual Meeting of the American Educational
Research Association, 2004.

[31] E. Noei, F. Zhang, S. Wang, Y. Zou, Towards prioritizing user-related issue reports
of mobile applications, Empir. Softw. Eng. 24 (2019) 1964–1996.

[32] H. Borges, M.T. Valente, What’s in a GitHub star? Understanding repository
starring practices in a social coding platform, J. Syst. Softw. 146 (2018) 112–129.

[33] G. Salton, A. Wong, C.S. Yang, A vector space model for automatic indexing,
Commun. ACM 18 (1975) 613–620, http://dx.doi.org/10.1145/361219.361220,
URL: http://doi.acm.org/10.1145/361219.361220.

[34] E. Noei, D.A. Da Costa, Y. Zou, Winning the app production rally, in: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,
2018, pp. 283–294.

[35] D. Birant, A. Kut, ST-DBSCAN: An algorithm for clustering spatial–temporal data,
Data Knowl. Eng. 60 (2007) 208–221, http://dx.doi.org/10.1016/j.datak.2006.
01.013.

[36] W.H. Kruskal, W.A. Wallis, Use of ranks in one-criterion variance anal-
ysis, J. Amer. Statist. Assoc. 47 (1952) 583–621, http://dx.doi.org/10.
1080/01621459.1952.10483441, URL: https://www.tandfonline.com/doi/abs/
10.1080/01621459.1952.10483441.

[37] O.J. Dunn, Multiple comparisons using rank sums, Technometrics 6 (1964) 241–
252, http://dx.doi.org/10.1080/00401706.1964.10490181, URL: https://www.
tandfonline.com/doi/abs/10.1080/00401706.1964.10490181.

[38] A. Trockman, S. Zhou, C. Kästner, B. Vasilescu, Adding sparkle to social coding:
an empirical study of repository badges in the npm ecosystem, in: Proceedings of
the 40th International Conference on Software Engineering, 2018, pp. 511–522.

[39] H. Hata, T. Todo, S. Onoue, K. Matsumoto, Characteristics of sustainable OSS
projects: A theoretical and empirical study, in: 2015 IEEE/ACM 8th International
Workshop on Cooperative and Human Aspects of Software Engineering, 2015,
pp. 15–21, http://dx.doi.org/10.1109/CHASE.2015.9.

[40] F. Hassan, Xiaoyin Wang, Mining readme files to support automatic building
of java projects in software repositories, in: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp. 277–279,
http://dx.doi.org/10.1109/ICSE-C.2017.114.

[41] Y. Zhang, D. Lo, P.S. Kochhar, X. Xia, Q. Li, J. Sun, Detecting similar repositories
on GitHub, in: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017, pp. 13–23, http://dx.doi.org/10.
1109/SANER.2017.7884605.

http://dx.doi.org/10.1007/s10664-015-9393-5
http://dx.doi.org/10.1109/ACCESS.2017.2682323
http://dx.doi.org/10.1109/ACCESS.2017.2682323
http://dx.doi.org/10.1109/ACCESS.2017.2682323
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb4
http://dx.doi.org/10.1145/2597073.2597120
http://doi.acm.org/10.1145/2597073.2597120
http://doi.acm.org/10.1145/2597073.2597120
http://doi.acm.org/10.1145/2597073.2597120
http://dx.doi.org/10.1007/s10664-018-9660-3
http://dx.doi.org/10.1007/s10664-018-9660-3
http://dx.doi.org/10.1007/s10664-018-9660-3
https://guides.github.com/features/wikis/
https://guides.github.com/features/wikis/
https://guides.github.com/features/wikis/
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb9
http://dx.doi.org/10.1109/CSMR.2013.14
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb11
https://help.github.com/en/github/getting-started-with-github/saving-repositories-with-stars
https://help.github.com/en/github/getting-started-with-github/saving-repositories-with-stars
https://help.github.com/en/github/getting-started-with-github/saving-repositories-with-stars
http://dx.doi.org/10.1109/ICSME.2016.31
http://dx.doi.org/10.1109/ICSME.2016.31
http://dx.doi.org/10.1109/ICSME.2016.31
http://dx.doi.org/10.1109/COMPSAC.2019.00013
http://dx.doi.org/10.1109/COMPSAC.2019.00013
http://dx.doi.org/10.1109/COMPSAC.2019.00013
http://dx.doi.org/10.1109/SANER.2019.8667997
http://dx.doi.org/10.1109/ACCESS.2019.2904333
http://dx.doi.org/10.1109/ACCESS.2019.2904333
http://dx.doi.org/10.1109/ACCESS.2019.2904333
http://dx.doi.org/10.1109/TSE.2016.2584053
http://dx.doi.org/10.1109/TSE.2016.2584053
http://dx.doi.org/10.1109/TSE.2016.2584053
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://github.github.com/gfm/
https://github.github.com/gfm/
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb25
https://spacy.io
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb27
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb27
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb27
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb27
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb27
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1037/0033-2909.114.3.494
http://dx.doi.org/10.1037/0033-2909.114.3.494
http://dx.doi.org/10.1037/0033-2909.114.3.494
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb32
http://dx.doi.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00077-5/sb34
http://dx.doi.org/10.1016/j.datak.2006.01.013
http://dx.doi.org/10.1016/j.datak.2006.01.013
http://dx.doi.org/10.1016/j.datak.2006.01.013
http://dx.doi.org/10.1080/01621459.1952.10483441
http://dx.doi.org/10.1080/01621459.1952.10483441
http://dx.doi.org/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
http://dx.doi.org/10.1080/00401706.1964.10490181
https://www.tandfonline.com/doi/abs/10.1080/00401706.1964.10490181
https://www.tandfonline.com/doi/abs/10.1080/00401706.1964.10490181
https://www.tandfonline.com/doi/abs/10.1080/00401706.1964.10490181
http://dx.doi.org/10.1109/CHASE.2015.9
http://dx.doi.org/10.1109/ICSE-C.2017.114
http://dx.doi.org/10.1109/SANER.2017.7884605
http://dx.doi.org/10.1109/SANER.2017.7884605
http://dx.doi.org/10.1109/SANER.2017.7884605

	How ReadMe files are structured in open source Java projects
	Introduction
	Research methodology
	Collecting data
	Identifying structural elements of the ReadMe#xfiles

	Approach and findings
	Threats to validity
	Internal validity
	External validity
	Reliability

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

